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ABSTRACT 

 
 
The shield region is a singular range of the Global Phase Diagram, where equations of state 
based on mean field theories predict a quadruple point for fluid binary mixtures. The 
quadruple point in question is characterized by three inmiscible liquids and a vapor in 
equilibrium. No experimental system has been found exhibiting such an equilibrium 
behavior. In this theoretical work we describe the interfacial and wetting behavior of the 
phases that coexist at the quadruple point by applying the gradient theory to the van der 
Waals equation of state.  
 



Introduction 
 
In 1968, van Konynenburg and Scott [1, 2] published a seminal work regarding the 
capability of the van der Waals equation of state (vdW-EOS) to predict fluid phase 
equilibrium diagrams in binary mixtures. As a result it was found that the vdW model 
originates five main Types, or classes, that differ essentially on the geometry and 
connectivity of the predicted critical lines. Mixtures that classify inside a same Type 
exhibit phase diagrams of equivalent shapes and, consequently, they display similar 
equilibrium behavior over the whole subcritical range. A remarkable contribution of the 
work of van Konynenburg and Scott was the development of a map, that they called 
“Master Diagram” (or Global Phase Diagram, GPD), where the prediction of each Type 
was bounded in terms of the parameters of the vdW-EOS. Since the work of van 
Konynenburg and Scott, the GPD approach has been further developed, becoming a 
powerful tool of analysis both in theoretical and applied thermodynamics. A reduced set of 
GPDs have been calculated for van der Waals type and theoretically based EOSs [3-11]. 
These works, restricted mainly to mixtures of molecules of equal size, focus on finding all 
conceivable phase equilibrium behavior and allow to conclude that EOSs display similar 
GPDs. Among the most interesting phenomena found are the ability of simple models to 
predict four-phase equilibria inside the shield region [5, 12] and the less known sword 
region. [13] 
In order to extend the systematic approach of the GPD to the case of interfacial fluids, 
several authors [13-24] have characterized some of their regions in terms of the thermal 
dependence of interface tensions and in terms of wetting transitions. From these works, 
devoted mainly to two or three phase equilibrium, we have a better understanding of the 
relation between the interfacial behavior and the topologic Type.  
The scope of this work is to fill some gaps regarding the interfacial behavior of mixtures 
that belong to the shield region (Sh-r)  [12]. As pointed out before, the Sh-r is characterized 
by a quadruple point (QP) of equilibrium where three inmiscible liquids and a gas coexist. 
Although no experimental binary mixture has been found exhibiting such an equilibrium 
behavior, a quadruple point of fluid phases is itself interesting, since it is possible to expect 
a condition high interfacial activity. In our analysis we applied the square gradient theory to 
vdW binary mixtures of molecules of equal size [14]. 
 
Theory 
 
The Shield Region 
 
Figure 1 depicts the Sh-r predicted by the vdW-EOS considering molecules of equal size. 
The coordinates of this Figure are related to the parameters of the EOS according to the 
following definitions [1, 2] : 
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In Eq.1, ai is the cohesion parameter and bi is the covolume that, for pure vdW fluids, 
depend on critical temperature Tc and pressure Pc according to : 
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where R is the gas constant. In addition, the cross parameters aij, bij of Eq. 1 are given by : 
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In Eq. 3, k12 is the interaction parameter that accounts for the magnitude and sign of  
deviation of the mixture from ideal behavior. 
As shown in Figure 1, the Sh-r for mixtures of molecules of equal size (ξ = 0) is an almost 
triangular symmetric region where three tricritical boundaries, a critical pressure step point 
(CPSP) boundary and a limiting azeotropic-heteroazeotropic boundary (III-A-H line) 
converge. A CPSP transition bounds the behavior of multiple stationary points in pressure 
along a critical line in a P-T projection. In addition, the III-A-H line masks the azeotropic 
behavior inside a range of inmiscibility.  Finally, a tricritical transition breaks the 
continuity of a critical line in a critical end point (CEP). Due to all these transitional 
mechanisms, the systems that may be found inside the Sh-r are hybrids of Types II and III 
that may present stationary pressure points and/or azeotropic behavior. 
Figure 2.a depicts a particular P-T projection that may be found inside the Sh-r [ζ = 0.04,    
λ = 0.46]. Due to the previously mentioned transitional mechanisms, the general trend and 
connectivity of the main critical lines vary as the coordinates ζ, λ change. However, every 
system drawn from the region in question exhibits QPs, as the shown in Figures 2, with the 
following similarities 
• the QP appears below the critical temperature of the constituents of the mixture, 

connecting a low temperature three-phase line with three high temperature three-phase 
lines. 

• the pressure of the QP is larger than the vapor pressure of pure components. 
• at the QP, three phases have liquid-type densities and the remaining phase has gas-type 

density. 
Figures 2.c to 2.d depict the phase diagrams that appear in the vicinity of the QP. It should 
be pointed out that the shapes of these diagrams are characteristic for every mixture inside 
the Sh-r. In the quoted Figures it is possible to recognize a liquid phase α rich in 
component 2 and a second liquid phase β rich in component 1. The concentrations of the 
gas phase G are bounded by the concentrations of α and β. In addition, starting from the 
temperature of the QP, a third liquid phase γ appears and it induces a bifurcation of the low 
temperature three-phase line. The liquid γ is characterized by mid-range concentrations 
and, depending on the coordinates of the GPD, it is able to form azeotropes. 



The boundaries of the Sh-r may be calculated considering that two phases of the QP 
collapse in an ordinary critical point (the phases that become critical are indicted in Figure 
1). In addition, every vertex of the Sh-r corresponds to a condition where three phases of 
the QP collapse in a tricritical point. 
In this work, we analyze the interfacial properties of the set of three phase lines for a 
system with fixed ζ, λ coordinates. Then we consider the interfacial properties of the QP 
for displacements in ζ and in λ, in order to asses the influence of the components of the 
mixture and the synergy between components, respectively. 
 
The square gradient theory for planar interfaces 
 
According to the gradient theory (GT) the interfacial tension (σ) between two bulk phases 
at equilibrium (α, β) is given by [23] 
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In this expression, ρi,j are the concentrations of species i and j, ρs is a reference 
concentration (for component i or j) whose behavior should be monotonically defined along 
the integral path. P0 is the bulk equilibrium pressure, nc stands for the number of 
components, a0 is the density of the Helmholtz energy of the homogeneous system, µi

0 is 
the chemical potential of component i at equilibrium. Both a0 and µi

0 can be determined 
directly from any EOS [24]. cij is the cross influence parameter that was considered 
constant. In the present work, cij is calculated from the following expressions [23, 24] 
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where Nav is the Avogadro constant. In Eq. 4, ρi and ρj are related by a set of partial 
differential equations (PDE) that describe the equilibrium condition for the interfacial fluid. 
However, Eqs. 5 allow to simplify the PDE problem to the following set of algebraic 
equations [23] 
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Equation 6 allows to quantify the population of species at the interface, together with the 
surface activity which is characterized by the condition (dρi/dρj) = 0 [23]. Physically 
significant solutions of Eqs. 6 should be bounded by the hard core limit of the EOS (in this 
case the covolume) since at that limit µi → −∞. The numerical procedure that allows to 
calculate σ from Eqs. 4 and 6 was described in detail in a previous work [24]. 
 



Wetting transitions at fluid interfaces 
 
π phases in equilibrium may be contacted by a maximum of [½ (π – 1) π] interfaces, each 
one of which is characterized by an specific value of σ. For the case of three phases in 
equilibrium (α, β, γ) the interfacial tensions (σαβ, σαγ, σβγ) are interrelated by [14]: 
 

αβ αγ βγσ < σ + σ  partial wetting or Neumman inequality (7.a)

αβ αγ βγσ = σ + σ  total wetting or  Antonow rule (7.b)
 
the wetting condition is invariant to the cyclic permutation of the subindices α, β, γ. As 
written, Eqs. 7 describe the partial and total wetting of the γ phase on the αβ interface. The 
transition from partial to total wetting (or vice versa) is called wetting transition [14]. For 
the case of π > 3, no general rule exists to establish the mathematical condition of a wetting 
transition. Intuitively, it is possible to infer that a basic condition for a wetting transition is 
that at the least every set of (π -1) phases should be at the wetting transition. Following this 
argument, we can expect that a wetting transition at the QP (π = 4) requires a wetting 
transition condition for every set of three phases that we could select from the QP. 
Following such an hypothesis the wetting transitions of a QP may be analyzed using Eqs. 7. 
 
Results and Discussion 
 
Interface behavior at fixed ζ, λ coordinate 
 
The objective of this section is to analyze the ρ – ρ and σ – T projections for a specific QP 
inside the Sh-r, and to illustrate the connectivity of interfacial properties at the QP. The 
GPD coordinates, critical properties and interaction parameter of the mixture are indicated 
in Table I. Figures 2 illustrate the critical P-T projection and the phase diagrams for the 
system in question. The thermal evolution of the ρ – ρ projections for each three phase line 
that meets the QP is shown in Figures 3. From these figures we can conclude that the Sh-r 
exhibits dominant surface activity, as follows from the condition (dρi/dρj) = 0. Inspection 
of Figures 3 reveals that the ρ – ρ projections of every three phase line converge to a single 
trajectory at the QP, whose ρ – ρ projection is shown in Figure 4. Figures 5 and 6 show the 
σ – T projections for the complete set of three phase lines connecting at the QP. The 
interfacial behavior of mixture under analysis is summarized in Tables II and III. From 
these results, we can conclude that the interfacial tensions along the three-phase lines 
exhibit the usual trend that can be expected for heteroazeotropes at subcritical and critical 
conditions, as we described in a previous work [24].  
Focusing our attention on the QP, we can observe that the interfacial tensions of the low 
temperature three phase line connect the interfacial tensions of the high temperature three 
phase lines for the αβ, αG and βG interfaces. It is clear also that the temperature slope of 
these interfacial tensions change at the QP. In addition, due to the generation of the γ phase, 



additional interfacial tensions related to the γ interface appear at T ≥ TQP. In fact The QP is 
characterized by six interfacial tensions of different orders of magnitude. 
 
Interface behavior for the QP along the λ coordinate (ζ = 0.0404). 
 
The objective of this section is to asses the impact of the λ coordinate on the interface 
behavior. From Eqs. 1, it follows that λ displacements are related to variations of k12. A 
constant ζ value implies that the critical properties of mixture do not vary as λ changes. 
Consequently, this analysis reflects the influence of the synergy of the mixture on the 
interfacial properties of the QP.  
Figure 7 depicts the evolution of ρ – ρ projection as λ increases. Minor variations could be 
observed, allowing to deduce that the surface activity of the interface does not vary 
significantly with λ.  
Figures 8 illustrate the evolution of the six interfacial tensions of the QP. We can observe 
that, as λ increases, four interfacial tensions increase (σαG, σαγ, σαβ, σβγ) and two decrease 
(σβG , σγG). In addition, these Figures show that interfacial behavior is in agreement with 
the critical collapse of the γG and the αγ phases at the upper and lower limits of the Sh-r 
(see Figure 1). General results have been summarized in Table IV.  
Similar results can be found for every ζ ∈ (0 ; 0.0507]. As a consequence of the symmetry 
of the GPD, the range ζ ∈ [-0.0507 ; 0) exhibits the same patterns described before. 
Finally, analyzing the curves σ(λ) and using the Eqs. 7 we can conclude that, for the 
analyzed ranges, no wetting transitions are observed at the QP. 
 
Interface behavior for the QP along to ζ coordinate (λ = 0.4550) 
 
The objective of this section is to analyze the ρ – ρ and σ – ζ projections of a QP at a fixed 
λ value. Such an incursion reflects the influence of the critical properties of the constituents 
of a mixture.  Figure 9 shows the ρ – ρ projections for different ζ values. From this Figure 
it is possible to conclude that variations on the ζ coordinate affects strongly the surface 
activity. Such a behavior follows from the fact that ζ variations change the cij values. In 
Figure 9 we can also see that, as ζ decreases from 0.0507 to 0, the solutions of Eqs. 6 tend 
to the limit µi → - ∞. Specifically, at ζ = 0, the ρ – ρ projection becomes discontinuous. 
Such a discontinuity follows from the fact that the mixture is composed by equivalent 
molecules with large synergy. Figure 10 shows the ρ – ρ projections for the full ζ range, ζ 
∈ [-0.0507 ; 0.0507]. 
Figures 11 show the dependence of σ on ζ. As was shown in Figures 4 and 8, the QP is 
characterized by high and low interface tensions. In Figure 11 we can observe that, as ζ 
increases, five interfacial tensions increase (σαG, σαγ, σαβ, σβγ, σβG) and one decreases 
(σγG). It is also observed that the trend of interfacial tensions agree with the phases of the 
QP that become critical at the left and right hand side limits of the Sh-r. General results 
have been summarized in Table IV. Finally, the analysis of the curves σ(ζ) reveals that no 
wetting transitions are observed along the ζ coordinate. 



 
 
Concluding Remarks 
 
In this work we have analyzed interface properties and wetting transitions for mixtures of 
molecules of equal size inside the shield region. Special attention has been given to the 
properties of the quadruple point. Calculations have been based on the GT applied the 
vdW-EOS. The main advantage of such an approach is that the same EOS is used to predict 
phase equilibrium as well as interfacial properties. According to results, the shield region is 
characterized by qualitatively similar ρ – ρ projections and strong surface activity. In 
addition, ρ – ρ projections are very sensitive to changes in the ζ coordinate, due to 
variation of the influence parameter cij, and less sensitive to the λ coordinate. It follows 
then that the interfacial properties of the shield region exhibit strong dependence on the 
mixture and weak dependence on its synergy 
The QP of the shield region are characterized by six interfacial tensions of different orders 
of magnitude. Our results show no wetting transitions for the QP of molecules of equal 
sizes. 
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Table I. GDP coordinates, critical properties and interaction parameter for the 
mixture 
 

ζ λ Tc2 / Tc1 Pc2 / Pc1 k12 
0.040400 0.455000 1.084109 1.084109 0.454556 

 



Table II. Interfacial tension behavior along to three phase equilibria 
 

[αβGE] 
Temperature Range Phase Equilibria Type Interfacial tension behavior 

 
T < TQP 

subcritical equilibria 
αG, βG 

αβ 

σαG ≠ σβG ≠ σαβ ≠ 0 
σ decreases as T increases 
σ decreases and increases as T increases 

 
T = TQP 

subcritical equilibria 
αG, βG, αβ 

 
σαG ≠ σβG ≠ σαβ ≠ 0 

 

[αβγE] 
Temperature Range Phase Equilibria Type Interfacial tension behavior 

 
T = TQP 

subcritical equilibria 
αβ, αγ, βγ 

 
σαβ ≠ σ αγ ≠ σβγ ≠ 0 

 
TQP < T < TUCEP1 

subcritical equilibria 
αγ, βγ 

αβ 

σαβ ≠ σ αγ ≠ σβγ ≠ 0 
σ decreases as T increases 
σ increases and decreases as T increases 

 
T = T UCEP1 

 

subcritical equilibria 
αβ, αγ  

critical equilibria  
βγ 

 
σαβ ≠ σ αγ ≠ 0 

σβγ = 0 
 

[αγGE] 
Temperature Range Phase Equilibria Type Interfacial tension behavior 

 
T = TQP 

subcritical equilibria 
αγ, αG, γG 

 
σαγ ≠ σαG ≠ σγG ≠ 0 

 
TQP < T < TUCEP2 

subcritical equilibria 
αG, γG 

αγ 

σαγ ≠ σαG ≠ σγG ≠ 0 
σ increases as T increases 
σ decreases as T increases 

 
T = T UCEP2 

 

subcritical equilibria 
αG, γG  

critical equilibria  
αγ 

 
σαG ≠ σγG ≠ 0 

 
σαγ = 0 

 

[βγGE] 
Temperature Range Phase Equilibria Type Interfacial tension behavior 

 
T = TQP 

subcritical equilibria 
γβ, γG, βG 

 
σ γβ ≠ σ γG ≠ σ βG ≠ 0 

 
TQP < T < TUCEP3 

subcritical equilibria 
γβ, γG, βG 

σ αG ≠ σ βG ≠ σ αβ ≠ 0 
σ decreases as T increases 

 
T = T UCEP3 

 

subcritical equilibria 
βG = γG 

critical equilibria  
βγ 

 
σβG = σγG ≠ 0 

 
σβγ = 0 



Table III. Wetting behavior along to three phase equilibria 
 

[αβGE] 
Temperature Range Wetting behavior Transition Temperature 

 
T ≤ TQP 

G G

G G

G G

αβ α β

α αβ β

β αβ α

σ < σ + σ
σ < σ + σ
σ < σ + σ

 
 

No Wetting Transition 

 

[αβγE] 
Temperature Range Wetting behavior Transition Temperature  

 
TQ < T < TUCEP1 

 
αγ αβ γβ

γβ αγ αβ

σ < σ + σ
σ < σ + σ

 

 
No Wetting Transition 

TQP < T < Tw αβ αγ γβσ < σ + σ  No Wetting Transition 
T = Tw αβ αγ γβσ = σ + σ  Tw = 0.79605 

Tw < T < TUCEP1 αβ αγ γβσ > σ + σ  No Wetting Transition 
 

[αγGE] 
Temperature Range Wetting behavior Transition Temperature  

 
TQP < T < TUCEP2 

 

 
G G

G G

αγ α γ

γ αγ α

σ < σ + σ
σ < σ + σ

 

 
No Wetting Transition 

 

TQP < T < Tw G Gα αγ γσ < σ + σ  No Wetting Transition 
T = Tw G Gα αγ γσ = σ + σ  Tw = 0.8007 

Tw < T < TUCEP2 G Gα αγ γσ > σ + σ  No Wetting Transition 
 

[βγGE] 
Temperature Range Wetting behavior Transition Temperature  

 
TQP < T < TUCEP3 

 

 
G G

G G

G G

αβ α β

α αβ β

β αβ α

σ < σ + σ
σ < σ + σ
σ < σ + σ

 

 
No Wetting Transition 

 



 

Table IV. Interfacial behavior at Shield Region limits 
 
Shield Region limits Phase Equilibria Type Interfacial tension behavior 

 
 

γG 

subcritical equilibria 
 

αG, αβ, αγ, βG, βγ 
 

critical equilibria 
 

γG 

 
σβG ≠ 0; σαG = σαγ ≠ 0; σβγ = σβG ≠ 0 
 
 
σγG = 0 

 
 

βγ 

subcritical equilibria 
 

αG, αβ, αγ, βG, γG 
 

critical equilibria 
 

βγ 

σαG ≠ 0; σαβ = σαγ ≠ 0; σγG = σβG ≠ 0 
 
 
 
σβγ = 0 

 
 

αγ 

subcritical equilibria 
 

αG, αβ, βG, βγ, γG 
 

critical equilibria 
αγ 

σβG ≠ 0; σαβ = σβγ ≠ 0; σγG = σαG ≠ 0 
 
 
σαγ = 0 

 
 



 

Figure Captions  
 
[1] Shield region for equal size molecules calculated from vdW-EOS. α, β, γ 

inmiscible liquids phase, and G gas phase. () Tricritical line, (•••) Shield 
boundary, (–•–) Critical pressure step point line, (– – –) III-A-H  
 

[2.a] Pressure – Temperature diagram for mixture with QP at ζ = 0.0404, λ = 0.4550.  
() critical line, (•••) vapor pressure, (–•–) αβGE, βγGE, αγGE αβγE, ( ) QP, 
(æ) UCEPs 
 

[2.b] Connectivity details around QP in Fig. 2.a 
 

[2.c] Equilibria diagram for a pre-QP. (ç•••ç) polyphasic line 
 

[2.d] Equilibria diagram for a QP. (ç•••ç) polyphasic line 
 

[2.e] Equilibria diagram a post-QP. (ç•••ç) polyphasic line:  βγG,  αγG,  αβγ 
 

[3] Thermal evolution of interfacial concentrations for the each three phase equilibria. 
( ) α bulk phase, ( ) β bulk phase, ( ) γ bulk phase, ( ) G bulk phase 
 

[4] Interfacial concentrations at QP. ( ) α bulk phase, ( ) β bulk phase, ( ) γ bulk 
phase, ( ) G bulk phase 
 

[5] Thermal evolution of interfacial tension around QP. Zone of high interfacial 
tension. () σαG, (- - -) σαβ, (•••) σαγ, ( ) σ at QP. 
 

[6] Thermal evolution of interfacial tension around QP. Zone of low interfacial tension. 
(–•–) σβγ, (–••–) σβG, (— —) σγG, ( ) σ at QP 
 

[7] Variation of interfacial concentrations with λ at ζ = 0.0404. 
( ) α bulk phase, ( ) β bulk phase, ( ) γ bulk phase, ( ) G bulk phase 
 

[8] High and low zones for the evolution of interfacial tension as a function of λ at  
ζ = 0.0404. () σαG, (- - -) σαβ, (•••) σαγ, (–•–) σβγ, (–••–) σβG, (— —) σγG 
 

[9] Variation of interfacial concentrations with ζ at λ = 0.4550. 
( ) α bulk phase, ( ) β bulk phase, ( ) γ bulk phase, ( ) G bulk phase 
 

[10] Variation of interfacial concentrations for all ζ range at λ = 0.4550. 
(- - -) ζ ∈ [-0.0507 ; 0), () ζ ∈ (0 ; 0.0507] 
 
 
 



 

[11] High and low zones for the evolution of interfacial tension as a function of ζ at  
λ = 0.4550. () σαG, (- - -) σαβ, (•••) σαγ, (–•–) σβγ, (–••–) σβG, (— —) σγG 
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